New Insights into the In Silico Prediction of HIV Protease Resistance to Nelfinavir
نویسندگان
چکیده
The Human Immunodeficiency Virus type 1 protease enzyme (HIV-1 PR) is one of the most important targets of antiretroviral therapy used in the treatment of AIDS patients. The success of protease-inhibitors (PIs), however, is often limited by the emergence of protease mutations that can confer resistance to a specific drug, or even to multiple PIs. In the present study, we used bioinformatics tools to evaluate the impact of the unusual mutations D30V and V32E over the dynamics of the PR-Nelfinavir complex, considering that codons involved in these mutations were previously related to major drug resistance to Nelfinavir. Both studied mutations presented structural features that indicate resistance to Nelfinavir, each one with a different impact over the interaction with the drug. The D30V mutation triggered a subtle change in the PR structure, which was also observed for the well-known Nelfinavir resistance mutation D30N, while the V32E exchange presented a much more dramatic impact over the PR flap dynamics. Moreover, our in silico approach was also able to describe different binding modes of the drug when bound to different proteases, identifying specific features of HIV-1 subtype B and subtype C proteases.
منابع مشابه
Design of new potent HTLV-1 protease inhibitors: in silico study
HTLV-1 and HIV-1 are two major causes for severe T-cell leukemia disease and acquired immune deficiency syndrome (AIDS). HTLV-1 protease, a member of aspartic acid protease family, plays important roles in maturation during virus replication cycle. The impairment of these proteases results in uninfectious HTLV-1virions.Similar to HIV-1protease deliberate mutations that confer drug resistance on...
متن کاملScreening Efficacy of Available HIV Protease Inhibitors on COVID-19 Protease
Background and Aim: Advent of COVID-19 attracted the attentions of researchers to develop drugs for its treatment. Besides efforts on developing new drugs, screening available drugs for efficacy on COVID-19 could be an urgent action of initiating its pharmacotherapy. In this study, efficacy of HIV protease inhibitors on COVID-19 protease has been examined. Methods: Molecular docking based scree...
متن کاملResistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...
متن کاملResistance testing in children changing human immunodeficiency virus type 1 protease inhibitor.
OBJECTIVE To assess genotypic and phenotypic resistance testing in HIV-1-infected children failing a first protease inhibitor (PI) therapy. METHODS In a multicenter observational study 21 children, ages 3 to 16 years, were given two reverse transcriptase inhibitors and one PI (mainly ritonavir, n = 18). They were subsequently treated with single or dual PI-based therapy (predominantly nelfina...
متن کاملIn silico analysis of drug resistance in wild type and mutant HIV-1 subtype d protease
Methods The mutation frequency of subtype d in untreated persons was obtained from Stanford DR database, http://hivdb. stanford.edu/. Based on the database the wild type PTD sequence was generated. Crystal structure 3LZS showed more similarity based on BLASTp program. The protein structure 3LZS was used as a template to build wild type, major (L10V, N37D, K69Y), minor (K20I, L33I, P39T, Q61N), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014